更多精彩
当前位置: 首页 > 奇闻趣事 > >正文

腾讯AI×王者荣耀「绝悟」项目首亮相:KPL秋季决赛击败顶尖战队凶手 生物工程招聘,潮汐王座任务,利好消息,张振东,神州企橙,奴隶区

时间:2019-05-21 来源:金华新闻网
 

生物工程招聘,潮汐王座任务,利好消息,张振东,神州企橙,奴隶区

编者按:本文来自机器之心(ID:almosthuman2014),36氪经授权转载。

据机器之心了解,这是腾讯 AI Lab 与王者荣耀共同探索的研究项目――策略协作型 AI「绝悟」首次露面,并于昨天在KPL秋季决赛接受前职业 KPL 选手辰鬼、零度和职业解说白乐、九天和立人组成的人类战队(平均水平超过 99% 玩家)的水平测试。最终 AI 战队获得胜利。这是继围棋 AI「绝艺」后,腾讯 AI 在深度学习与强化学习领域的又一项前沿研究。

其实,腾讯 AI Lab 一直以来都在研究如何使用人工智能来打王者荣耀,我们可以从一些论文和演讲中略知一二。今年五月,他们和匹茨堡大学的研究人员曾经向 AI 顶级会议 ICML 2018 提交了一篇论文,其中人们尝试了 AlphaGo Zero癫痫病初期有哪些表现 中出现的蒙特卡洛树搜索(MCTS)等技术,并取得了不错的效果。

那时,人工智能还只能玩狄仁杰一个英雄。几个月后,它们已经可以「五人」组队,在王者段位和人类玩家打得有来有回了。

那么问题来了:王者荣耀的「前 1%」玩家是有多强?作为流行手机游戏,王者荣耀自上线到现在已经有三年了,有的高手早早就上了王者,但大部分都还卡在钻石和铂金段位上。今年 10 月,腾讯官方统计了王者荣耀玩家的段位分布图:

看起来,能和 AI 打的至少需要是「最强王者」级别水平的玩家。

以下是腾讯 AI Lab 在 arXiv 上传的最新一篇论文《Hierarchical Macro Strategy Model for MOBA Game AI》的相关内容:

AlphaGo 打败世界冠军李世�h让我们看到了通用人工智能的曙光(Sil治疗癫痫病好的专科医院ver et al. 2016)。从那时起,游戏 AI 不仅引起了研究者的注意,还吸引了大量来自公众的目光。游戏 AI 的目标远不止玩游戏的机器人那么简单。游戏为模拟真实世界提供了理想的环境。AI 研究人员可以在游戏中开展实验,并将卓越的 AI 能力应用到现实世界。

尽管AlphaGo是通往通用人工智能的里程碑,但与现实世界相比,它所解决的问题仍然非常简单。因此,研究者们近来更加关注即时战略游戏(RTS),如 Dota(OpenAI 2018a)、星际争霸(Vinyals et al. 2017; Tian et al. 2017),这些游戏涉及的问题更加复杂。Dota 是一款著名的奇幻 5v5 多人在线战术竞技游戏(MOBA)。每个玩家控制一个英雄,与其他四个队友一起保护防御塔,攻击敌人的防御塔并通过杀死小兵收集资源。他们的目标是摧毁敌人的基地。

作为 MOBA 游戏,王者荣耀内含防治癫痫病要多少钱御塔、野区、装备等机制。

与围棋相比,RTS 游戏的难度主要体现在四个方面:1)计算复杂度。RTS 游戏动作空间和状态空间的计算复杂度可能达到 10^20,000,但围棋的复杂度只有 10^250 左右(OpenAI 2018b)。2)多智能体。RTS 游戏通常包含多个智能体。多个智能体协调、合作非常关键。3)信息不完整。与围棋不同,许多 RTS 游戏利用战争迷雾(Vinyals et al. 2017))来增加游戏难度。4)奖励稀疏、延迟。在围棋中,基于游戏奖励进行学习的挑战性在于稀疏和延迟。RTS 游戏长度通常大于 20,000 帧,而每局围棋通常不超过 361 步。

围棋和 MOBA 的计算复杂度对比

为了掌握 RTS 游戏,玩家在宏观战略操作和微观执行方面都要有很强的技巧。在最近的研究中,大多数注意力和研究都集中在微观执行方面 (Vinyals et保山市专治癫痫病的知名医院 al. 2017; Tian et al. 2017; Synnaeve and Bessiere 2011; Wender and Watson 2012)。到目前为止,由 OpenAI 开发的 Dota2 AI 使用的是强化学习,OpenAI Five 已经取得了最先进的成果 (OpenAI 2018a)。OpenAI Five 是通过最近的策略优化算法和团队奖励直接在微观动作空间上训练的 (Schulman et al. 2017)。在 2018 年的国际比赛(DOTA2 2018)中,相比顶尖的职业 Dota2 队伍,OpenAI 展示出了强大的团队战斗技能与合作意识。OpenAI 的方法没有明确地模拟宏观战略,而是使用微观操作来学习整个游戏。然而,由于宏观战略管理薄弱,OpenAI Five 无法击败职业队伍 (Vincent 2018; Simonite 2018)。

本文地址: 转载请注明出处!

推荐阅读

热门阅读